IMAGINE - QUASI-LAUE SINGLE-CRYSTAL DIFFRACTOMETER

IMAGINE is a state-of-the-art neutron image plate single-crystal diffractometer. It will provide atomic-resolution information on chemical, organic, metallo-organic, and protein single crystals, enabling new understanding of their chemical, physical, and biological

Cold neutron guide hall.

structure and function. Research at IMAGINE will benefit communities with interests in pharmaceuticals, minerals and other inorganic crystals, small molecules, molecular organo-metallic crystals and metal-organic frameworks, and molecular crystal structures. It will also enable the neutron crystal structure of oligonucleotides and proteins to be determined at or near atomic resolutions (1.5 Å).

The IMAGINE team welcomes discussion and interaction with the

MAATEL

scientific community
throughout the
installation and
commissioning phase
of the instrument and is
excited to start working
with the community
to build an excellent
education and science
program. The acquisition
and installation of
IMAGINE is supported
by the National Science
Foundation

APPLICATIONS

Protein Structure-Function

- Hydrogen atoms in proteins
- Enzymology
- Ligand complexes
- Drug design

Supramolecular Crystallography

- Single-molecule magnets
- Metal-organic frameworks
- Polyoxometalates

Materials Under Extreme Environments

- 1 Mb and cryogenic temperatures
- Phase transitions
- Magnetic transitions

FOR MORE INFORMATION, CONTACT

Instrument Scientist: Flora Meilleur, meilleurf@ornl.gov, 865.241.2897 http://neutrons.ornl.gov/instruments/HFIR/CG4C/

SPECIFICATIONS

Flux	5 × 10 ⁹ n/s/cm ²
Cross section	10 x 19 mm
wavelengths minimum	2, 3, 3.5 Å
wavelengths maximum	3, 4, 4.5 Å
Detector	Neutron image plate
Detector size	1200 x 450 mm
Pixel size	125, 250, 500 <i>µ</i> m
Sample- to-detector distance	200 mm
Goniometer	Single Phi rotation axis
Cryogenics	
High-temperature furnaces	
Pressure cells	

Status

To be commissioned 2011

The acquisition and installation of IMAGINE is supported by the National Science Foundation. Award to Tibor Koritsanszky, Middle Tennessee State University.

